

PRENSENTATION OUTLINE

Cast in-situ

On-site Construction

- · Supported on Falsework (Shoring)
- Balanced Cantilever using From Traveller (FT)
- Incremental Launching Method (ILM)
- Moveable Scaffolding System (MSS)

Precast

Off-site Prefabrication

- Precast Girders
 - •Thin Girder
 - Full Span Girder
- Precast Segments
 - Balanced Cantilever Method (BCM)
 - Span by Span Method (SBS)

Supported on Falsework (Shoring)

- Labour intensive to erect falsework
- ·Slow cycle time due to excessive manual operation
- Finished concrete surface may not be good if formwork quality is not taken care of
- Difficult to construct at area where ground access and support is not available

Supported on Falsework (Shoring)

Staging onto river bed

Staging supported by piers

Cast in-situ Suppo

Supported on Falsework (Shoring)

Cantilever suspension

Traffic diversion is required

Balanced Cantilever using Form Traveller (FT)

- •Useful for long span bridge with access constraints
- ·Cranage capacity requirement is minimized, crew efficiency is optimized
- •Flexible system allows forming of varying segment depth and length
- Short cycle time from 7 to 14 days for every pair

Balanced Cantilever using Form Traveller (FT)

Four-framed form traveller

Lowering bottom platform onto pontoon

Balanced Cantilever using Form Traveller (FT)

Stabilising with fictitious columns

Resisting unbalanced moment

Balanced Cantilever using Form Traveller (FT)

Longitudinal and transverse tendons

Post-tensioning before launching of FT

Underslung Form Traveller and Stay Cables

Project Record of Associating Company, Dywitech & DSI

Incremental Launching Method (ILM)

- •Elimination of extensive falsework and shoring
- Stationary casting location under weather proof shelter, higher productivity, better QC
- ·Can accommodate constant vertical and horizontal curvatures
- Cycle time from 10 to 12 days for every segment, i.e. 12m

Incremental Launching Method (ILM)

Launching Nose

Sliding Pad

Incremental Launching Method (ILM)

Stressing of top PC bars

Why Precast

- •Increased labour cost in cast in-situ works due to intensive manual activities
- Need rapid completion of project to ease traffic problems
- ·Construction over water, over traffic, built-up areas or mountainous terrain
- Higher quality control under factory condition in precast yards

Longitudinal & transverse slicing

- •Bridge deck is segmentalised or sliced into smaller pieces
- Longitudinal slices, i.e. precast girders can span temporarily between piers
- •Transverse slices, i.e. precast segments are not self-supporting, need to be temporarily supported or hung and require temporary stressing

Longitudinal slicing

Transverse slicing

Precast girders - launched by cranes

- Minimal temporary works, optimized crew size
- ·Fast pace of erection, multiple work fronts are possible
- ·Cranes are generally available in the market at affordable rental cost
- •Ground access and proper ground preparation are required

Tendam lifting

Single crane lifting

Precast girders-launched by Launching Gantry (LG)

- Optimized crew size
- Fast pace of erection, multiple work fronts are possible with multiple LG
- •Ground cranage support is required for initial set-up of LG and for dismantling
- Temporary loads are introduced to permanent structures

Double truss LG

Single truss LG

Precast girders-launched by LG-"rear feeding"

Delivery of girder by locomotive and railcar on temporary railway

Launching of precast girder

Launching of LG

Precast girders-launched by LG-"rear feeding"

Precast girders-launched by LG-"side feeding"

Lifting of girders from the side

Long transverse sliding

Precast girders-launched by LG-special LG features

Narrow pier head

Everything done on the narrow pier head

Slim supports, widely spaced truss

Precast full span girders-launched by LG

Full span girder for Singapore MRT - maximum 270 ton

Precast full span girders-launched by LG

Precast full span girders-launched by LG

Transporting girders on erected decks

Transporting through curvature

Launching of truss using PC girders as counterweight

Precast full span girders-launched by LG

Feeding in of full span girder

Lowering of full span girder

Precast Segments – Types

Precast Segments - perfect finishing and alignment

"seamless" finishing

perfect profiling

BRIDGE CONSTRUCTION REFERENCES BY UTRACON GROUP

Precast Segments - precamber analysis

GC during precasting

GC during erection

Precast Segments - short line precasting

Segment casting yard

Segment matched casting

Precast Segments - long line precasting

Full length precasting bed

Separation of segments

Precast Segments – storage & logistics

Segment storage yard

Straddle carrier

Precast Segments - temporary stressing

Bottom concrete blister

top concrete blister

Precast Segments - BCM - launched by cranes

Launching of cantilever segment

Launching of closure segment

Precast Segments - BCM - launched by lifters

Precast Segments - BCM - in-situ stitching

Starter segment stitching

Mid-span stitching

Precast Segments – BCM – erected cantilevers

Precast Segments – BCM – additional supports

Stabilizing props

Shoring for end span segments

Precast Segments - SBS - launched by LG

Erected span rested on pier heads

LG's supports on pier heads

Longitudinal prestressing

Precast Segments - SBS - launched by LG

Full span stressing before lowering

Erected span rested on temporary support while being stitched

Thank you for your attention

For inquiries, please contact: Mr Khoo: kjh@utracon.com or +65 90703028

The UTRACON Group The One-stop Specialist for Bridge Builders

Construction Engineering | Geometry Control | Precasting | Post-Tensioning DSI Heavy Lifting | Viaduct Launching | System Formwork | Bearings and Expansion Joints